NutriDyn™

Iron Support

Support for Essential Metabolic Functions*

Iron Support promotes essential metabolic functions by helping support healthy red blood cells.* Iron is an essential mineral that supports transmission of nerve impulses and promotes healthy oxygen levels in cells and tissues.* Iron Support is a comprehensive formula with vitamin C for proper iron absorption.*

How Iron Support Works

Iron deficiency is a common concern across populations from children to the elderly with a variety of causes including inadequate dietary intake, excess turnover, and excessive blood loss.^{1,2}

The body monitors and detects changes in iron absorption and metabolism to promote healthy immune responses.⁺¹ Iron metabolism further supports healthy red blood cells and their function in transporting oxygen at the cellular level throughout the body.*3

Essential metabolic functions depend on the iron, vitamin B12, and folate found in Iron Support.*4 These nutrients contribute to forming and maintaining healthy red blood cells that promote peripheral circulation.^{44,5} Healthy red blood cells transport oxygen and support healthy immune responses in the body.*5

Maintaining healthy levels of iron promotes overall well-being and health.^{+6,7} Clinical evidence further suggests that nutritional supplementation is the preferred response to maintaining healthy iron levels.*8

Iron Support Supplementation

The ingredients in Iron Support are dosed in a manner that is congruous with what research suggests to be effective and safe, particularly for supporting essential metabolic functions.*

Clinical evidence and research cited herein shows that the ingredients in Iron Support may:

- Support essential metabolic functions*
- Support healthy red blood cells*
- Support proper iron absorption⁺
- Support healthy immune response*

Form: 180 Capsules

Serving Size: 1 Capsule

Ingredients	Amount	% DV
Vitamin C (as ascorbic acid)	80 mg	89%
Thiamin (as thiamin mononitrate)	5 mg	417%
Vitamin B6 (as pyridoxine-5-phosphate)	5 mg	294%
Folate (as calcium L-5-methyltetrahydrofolate)	600 mcg DFE	150%
Vitamin B12 (as methylcobalamir	n) 350 mcg	14,583%
Iron (as ferrous bis-glycinate)	29 mg	161%
Copper (as copper lysine HCl)	1 mg	111%
L-Glycine	100 mg	**
Succinic Acid	100 mg	**

Other Ingredients:

Hydroxypropyl methylcellulose, microcrystalline cellulose, vegetable magnesium stearate, silicon dioxide.

Directions:

Take one capsule daily or as directed by your healthcare practitioner.

Warning: Accidental overdose of iron-containing products is a leading cause of fatal poisoning in children under 6. Keep this product out of reach of children. In case of accidental overdose, call a doctor or poison control center immediately.

Caution: If you are pregnant, nursing, or taking medication, consult your healthcare practitioner before use. Keep out of reach of children.

DAIRY-FREE GLUTEN-FREE

PRODUCED IN A GMP FACILITY

These statements have not been evaluated by the Food and Drug Administration. This product is not intended to diagnose, treat, cure, or prevent any disease.

For more information, visit: www.nutridyn.com

ND563 ©2019 NutriDyn

References:

- 1. Zimmermann, M. B., & Hurrell, R. F. (2007). Nutritional iron deficiency. The Lancet, 370(9586), 511-520.
- 2. Pettit, K., Rowley, J., & Brown, N. (2011). Iron deficiency. Pediatrics and Child Health, 21(8), 339-343.
- 3. Coffey, R., & Ganz, T. (2017). Iron homeostasis: An anthropocentric perspective. Journal of Biological Chemistry, 292, 12727-12734.
- 4. Moll, R., & Davis, B. (2017). Iron, vitamin B12 and folate. *Medicine*, 45(4), 198-203.
- 5. Bain, B. J. (2017). Structure and function of red and white blood cells. (2017). Medicine, 45(4), 187-193.
- 6. Nairz, M., Theurl, I., Wolf, D., & Weiss, G. (2016). Iron deficiency or anemia of inflammation? Wiener Medizinische Wochenschrift, 166, 411-423.
- 7. Von Haehling, S., Jankowska, E. A., Van Veldhuisen, D. J., Ponikowski, P., & Anker, S. D. (2015). Iron deficiency and cardiovascular disease. *Nature Reviews Cardiology*, *12*, 659-669.
- 8. Lopez, A., Cacoub, P., Macdougall, I. C., & Peyrin-Biroulet, L. (2016). Iron deficiency anemia. The Lancet, 387(10021), 907-916.